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Abstract. A new general formulation for nonlinear quantum mechanics is discussed. It is shown 
that a nonlinear deterministic evolution with random variables can model a measurement as a 
dynamical process. Phases of state vectors are treated as random variables of the theory. 

1. Introduction 

The quantum measurement problem consists in conciliation of the way in which probabilities 
are calculated with deterministic and linear Schrodinger evolution. There are several 
approaches to solving the problem. The first approach denies the necessity of describing 
measurements on the basis of suitable interpretation [1,2]. The second attributes the 
'collapse of a wavefunction' to an~inevitable interaction with an environment [3]. The third 
consists in replacement of the Schrodinger equation by another one capable of describing 
measurements. 

We discuss the last opportunity. This choice is based on the fact that standard quantum 
mechanics is a non-relativistic theory. The notion of the wavefunction is valid for a limited 
region of spacetime and small velocities whereas an act of observation requires processes 
of particle creation and annihilation, which belong to the domain of relativity. Though 
relativistic theory is considered to be linear, the transition to the non-relativistic case may 
produce nonlinear corrections to the Schrodinger equation, which revealed themselves in 
the measurement process. 

Various models of nonlinear quantum mechanics have been discussed from the beginning 
of quantum theory up until now [4-141. Recently progress has been made in understanding 
what kind of nonlineanties can be used to describe state vector reduction as a dynamical 
process [15-221. We consider the following class of nonlinear equations conserving the 
norm of a state vector I@) (h = 1) :  

idl@)/dt =XI@) = HI@) + (1 - &)UI@) (1) 
where H is the Hermitian part of the Hamiltonian 1.1, ( 1  - &'$)U is the non-Hermitian 
term, and P$ = ]@)(@I is the projection operator. It is necessary to note that U can be an 
arbitrary linear or nonlinear operator. 

Various generalizations of the Schrodinger equation can be found from (1) with various 
choices of H and U. For example, the Bohm-Bub theory 1.51 corresponds to the choice 
H =~O, 
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where y is a coupling constant, 5. are complex constants, and from here on Iq,) belongs 
to a complete set of orthonormal vectors. The Pearle theory of 1976 [SI can be found with 

where A is an arbitrary linear self-adjoint operator. The Gisin theory of 1981 [IO] is given 
by H = Ujki = Ho, where HO is the linear Hamiltonian and k is a real constant. The 
particular case of the Gisin theory of 1989 [17] as well as the Ghimdi eta1 theory of 1989 
[181 corresponds to 

H = Ho U = i A d W  - $y(A - (1jrlA1@))~ 

where A = (A;} is a set of self-adjoint operators and W = {W;)  is a real Wiener 
process with (dWi dW,) = yS;j dt. The choice of the Hamiltonian matrix H in the form 
Hik = azw/(a$;a$k) and U = 0 leads to the Weinberg theory [ZO]. The generalization by 
Dodonov and M i d i  [I41 of the Doebner and Goldin equation 1131 can be found with 

or, equivalently, with 

where Q is a linear operator. 
It is evident from the above examples that (1) provides a suitable basis for nonlinear 

generalizations of quantum mechanics. It was discovered by Gisin [10,23] without the 
emphasis on the possibility of U being a nonlinear operator. Then, it was independently 
found in [21,241. 

Equation (1) has several important features. First, different Hamiltonians can result in 
identical motion equations. This is the case, e.g., for Hamiltonians 7.1 and 'U + A(I - P#), 
where A is an arbitrary operator. This means that the division of the nonlinear Hamiltonian 
into Hermitian and non-Hermitian parts is arbitrary in a class of equivalent Hamiltonians. 
We can point out the completely Hermitian Hamiltonian 'U = H+(1 -P#)U+U+(I - P+) 
which also results in motion equation (1). Conversely, any normconserving nonlinear 
Hamiltonian has an equivalent one presented by (1): 

7.1 = (E + X+)/2 + (1 - Pq)(E - E+)/2. 

Thus, the Hamiltonian action on a state vector instead of the Hamiltonian itself is of interest 
in a nonlinear theory. 

Second, a U operator may have a trivial part connected with the rescaling of a global 
phase of a state vector. Any U operator can be written in the form U = R + Q with 
R+ = R and Q+ = -Q. Then, the Hermitian part R can be moved to the Hermitian part 
of the Hamiltonian by a change of the phase of the state vector. Namely, the state vector 

I 

14) =exp(-ix)lrlr) -with x = (1lrlRW)dr 
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obeys ( 1 )  with 

= H(exp(iX)lq)) + R(exp(ix)lq)) and = Q(exp(ix)l$)). 

Therefore, we can impose the condition U+ = -U on the nonlinear operator without loss 
of generality. 

The most remarkable feature of (1) is the projection property exhibited by some 
nonlinear Hamiltonians. As an example. let us take the Hamiltonian 7f in the form 

where qn are complex constants and y is a positive coupling constant [ZI]. Then, 
the dynamics (1) causes ‘almost each initial state of the system to evolve to the state 
with the maximum value of Re(q,). This ‘evolution is completely strange to linear 
quantum mechanics and 2llows us to construct simple schemes for measurement modelling. 
Here, a measurement description implies’ deterministic dynamics which specifies different 
experimental outcomes by means of some random variables or initial conditions (say, a 
phase of an initial state vector). Naturally, the probability of finding the system in a given 
final state must agree with experimental observations. 

2. The description of measurements 

We model only non-destructive measurements consisting of  the interaction of a quantum 
system with a classical detector. We assume that the system dynamics in the measurement 
process is described by equation (I), which is closed in terms of a system state vector. 
The incorporation of a state vector of the detector creates no problem. A classical detector, 
which is represented by a nonlinear U operator, determines the ‘strength’ of the nonlinear 
terms and a set of state vectors observed after measurement. The important question as to 
how such a nonlinear potential is produced by a system interaction with individual atoms of 
the detector is not clear and will not be discussed here. The final state vectors of the system 
depend upon the measurement procedure and may be almost arbitrary [25]. However, we 
assume that the final states coincide with the eigenstates of an operator A corresponding to 
a measured quantity. The transition to the general case is straightforward. 

First we consider the case of the constant U given by (Z), where state vectors Iq,) are 
eigenstates of the measured operator A and qn are rea1,constants. These random constants are 
responsible for different outcomes in a repeated measurement and are the so-called ‘hidden 
variables’ of the theory.. Since the A-operator and the linear Hamiltonian Ho commute 
(in the opposite case experiments do not give required outcomes), state vectors I&) are 
eigenstates of the linear Hamiltonian with energies E,: 

idlrp.)/df = H o l v J  = &h). 
This means that HO and U also commute. 

Developing the state vector of the system as I@) = a,lq,J we obtain . 
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and the state Ivi) with the biggest qi survives. Fortunately, nonlinear equation (3) has the 
exact solution 

In terms of ai this yields 

Let us analyse solutions (5). (6). If the quantum system was in the eigenstate lqi) of the 
measured operator, then its final state will remain Iv;) with the probability 1. In the general 
case, the system evolves to the state with the maximum value of q,,. It is worth noting that 
the evolution goes from a pure state to another pure state. Different outcomes in a repeated 
measurement are specified by different sets of random variables qn. Let us calculate the 
probability pi of finding the system in a particular state Ivi) after the measurement. Since 
the state with the biggest qi survives, pi equals the probability of finding q; =- q. for any 
n # i, n = 1,2, ... and is given by 

pi = / . . . / o ( d d q i n N q ;  - q n ) 4 q n ) d q n  (7) 
n#i 

where O(q) is the theta-function and o(q.) are the probability distributions of random 
variables q.. The measurement theory requires 

pi = IW(tO)Ivi)I*. (8) 

This is the case for random variables q,, distributed along (--00; 01 with probability 
distributions 

w(q.) = Iw(r0)lv.) I' exP(l (@(b)lvn) lZqn). (9) 

It is easy to check that (7), (9) indeed yields pi = I(@(to)lqi)12. 
The distributions (9) for q,, are not unique. Any change in variables in the integral (7), 

which does not change the integral value and does not change the projection property of (I), 
provides other distributions with correct outcome probabilities. In addition, the number of 
random variables may be smaller than the number of system states. If, e.g., ( is a random 
variable uniformly distributed along [O, I ]  and the q,, are given by 

41 =-e  

then, operator (2) also models the measurement process. This example demonstrates the 
minimal number of random variables. 

Thus, there are two basic assumptions in the proposed oversimplified scheme. The 
first is nonlinear evolution (1) and the second is the random operator (2), (9). (10). Then, 
starting from a state [@( to ) ) ,  the quantum system will tend to a state \pi) with the probability 
I(@(to)Ivi)l', as measurement theory requires. 
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3. The change in random variables 

The probability distributions (9) show an undesirable dependence upon the initial state 
vector. This is the consequence of our choice of the constant U operator. Let us remove 
this restriction and consider the q. as functions of the system state. Then, transformations 
qn = u n / l ( ~ l ( o n ) 1 2  eliminate the dependence of (9) upon the initial state vector. Here, the 
random variables U. are distributed along (-w; 01 with distributions 

44 = exp(uJ (11) 

and the random U operator possessing .~ property (8) is given by 

Operator (12) is ill defined for the case where a, = (@I@) = 0. This means that 
the derivative da./dr has a singularity at the point where an = 0. However, solutions 
of the motion equation exist and can be found, e.g., from the equation for populations 
1. = l(vJ*)12 

It is important to note that (13) is the linear equation. 
Unfortunately, the operator (12) cannot model measurements. It would lead to negative 

values of state populations. For (12) to be consistent with quantum theory the random 
variables U,, should be positive. These general requirements are written as 

The case of a positive U/i in a different scheme has been studied by Dodonov and Mizhari 
[141. Using the transformation q. + -l/&, we avoid the difficulty and find that 

indeed models measurements. The operator (14) differs from that in the Bohm-Bub theory 
only by a set of random variables. A number of other operators capable of  describing 
measuremens is generated by (14) with the help of suitable transformations. 

We note that one of them 

results in the nonlinear motion equation which has exucr 'blow-up' solutions 
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Again, Iqi) survives with probability p ,  = I{@(ro)lpi)12. 
The most attractive candidates for random variables are phases of eigenstates Iqpi). The 

phases can be represented by random variables xi uniformly distributed along [O,Zn] (271 
is an interval of the phase change). The surprising thing is that U, = In(x,/Zn) are random 
variables which have exactly the probability distributions (11). It follows from a simple 
calculation 

u(un) = - 8(ln(xn/2n) - U,) dx. = exp(u.). L r 
In addition, in the case of an imaginary U operator the phases of an are constant. It means 
that values of 2x. = ln(($lqn)/(qnl@)) are also constant. Therefore, we find that the 
nonlinear operator 

reproduces all features of operator (14). Thus, (17) can be used to describe measurements. 
Operator (17) does not contain any additional random variable except ones connected with 
the state vector of the system. Evolution (1) with (17) pushes the system to achieve the state 
Ipi) with the probability pi = [(@(fo)lqi)12. Averaging is performed over various phases 
x .  of eigenstates lqn). 

4. 'Density matrix dynamics 

Finally, let us discuss the evolution of the density operator. There are many distributions 
of pure states corresponding to the same density operator. In linear quantum mechanics 
all these distributions evolve in the same way. In general, this is not true for nonlinear 
dynamics. The density matrix equations corresponding to (I), (14), (17) are not closed form. 
It was Gkin [17] who showed that such dynamics would make it possible to signal faster 
than light. Fortunately, the nonlinear evolution with (14), (17) does not give a superliminal 
line. It follows from the absence of the mean value of the operators (14), (17) due to the 
fact that { l /un )  = -ca. Though we can find the dynamics of an initial state vector for each 
set of parameters u., the state vector distribution obtained by averaging over U, produces 
no density operator. The interrupted measurement, therefore, will not result in a certain 
density operator. So, it is impossible to predict the results of measurements which follow 
the interrupted measurement and to construct a superliminal line in this manner. Naturally, 
upon completion of the measurement the density matrix satisfies Gisin's criterion [17]. 

The negative sign of random variables q. allows us to transform the model with constant 
operator (2). (9), (10) and eliminate superliminal communications. For this purpose, it 
is sufficient to introduce an additional 'zero' state corresponding to the absence of the 
quantum system. The 'zero' state represents the case when a detector gives no outcomes. 
Then, the system state vector is developed as I@) = li,[p,J + aol0) with the condition 
Cn l&jZ + lnOl2 = 1. Taking a, = N& and d(ln N)/dr = E, yq.la.I*, we find that 
d&/dr = yq,& and l& = 1 - 1/N2. The dynamics of the density operator which 
does not include the 'zero' state is linear. The dynamics is nonlinear in terms of the a, 
corresponding to the conditional probabilities. 
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5. Problems and conclusions 

The most serious problem of the proposed theory is, of course, ad hoc nonlinear operators 
(2), (S), (IO), (14), (17). Although they nicely model the measurement procedure, we have 
no rules with which to choose one of them in a natural way. In addition, it is not clear how 
such an operator is produced by the interaction of a quantum system with an apparatus. 
Problems exist with the preferred basis and the strength of the nonlinear terms [8]. In the 
general case, we need a nonlinear equation which is, to a great accuracy, the Schrodinger 
equation for a small number of particles and a reduction equation for a huge number of 
particles. Because the norm of the one-particle state vector is not conserved in a relativistic 
theory, it appears that we should consider a dynamics that does not conserve the norm of a 
state vector. Very interesting examples of such evolution have been studied by Ghuardi et 
a1 [18]. 

Nevertheless, we believe that the discusseddynamics can be a good approximation to 
what is really happening in the measurement process. If it is possible to describe a system 
interaction with a classical detector by means of a closed equation on the normalized state 
vector, then, equation (1) should be regarded as the only candidate. It opens up a new area of 
investigation, possesses the attractive projective property and demonsfxates exact solutions 
in several important cases. It allows us to construct models with random variables, which 
reproduce quantum mechanical results of measurements. Phases of state vectors can be the 
random variables of the theory. It is interesting, however, to find some physical reason for 
the proposed  evolution.^ 
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